Intégrer la classe d'ECS2 du lycée La Bruyère à Versailles

Chaque année, quelques étudiants extérieurs intègrent la classe d'ECS2 du lycée La Bruyère en carré ou en cube et y trouvent un environnement propice pour exprimer leur potentiel.

Nous les accompagnons en leur proposant des méthodes adaptées à leur niveau et à leurs objectifs, qui leur permettent en général d'obtenir de très bons résultats aux concours, jusqu'aux parisiennes. Des témoignages sont en cours de publication. Les candidatures peuvent être envoyées dès maintenant. Pensez-y et n'hésitez pas à .

Base d'annales

Une base d'annales (avec énoncé et, pour certaines épreuves, corrigé) est en cours de constitution. Vous pouvez y accéder grâce au menu de droite, rubrique ressources/annales par année ou par épreuve. Vous y retrouverez en particulier les épreuves 2018 corrigées et les épreuves 2019 corrigées !

Annales 2018

  • Sujet - Corrigé (personnel) - Rapport (officiel)

    Le sujet introduit les notions de convergence en probabilité et en loi pour les séries de variables aléatoires, qu'il étudie au travers de plusieurs exemples : séries télescopiques puis série harmonique alternée ou lacunaire. 

    Thèmes abordés : séries, variables aléatoires discrètes, variables aléatoires à densité, convergences en probabilités, algorithmique, interprétation. 

  • Sujet - Corrigé (personnel) - Rapport (officiel)

    Le sujet porte sur la formule sommatoire de Poisson après quelques préliminaires classiques, puis en propose une application en probabilités. 

    Thèmes abordés : complexes/trigonométrie, suites, séries, fonctions d'une variable, intégration, variables aléatoires discrètes, algorithmique, simulation. 

  • Sujet - Corrigé (personnel) - Rapport (officiel)

    Le sujet introduit les séries entières et aborde le problème des moments pour une variable aléatoire à valeurs entières, par l'intermédiaire de sa fonction génératrice. 

    Thèmes abordés : polynômes, algèbre linéaire, suites, séries, fonctions d'une variable, variables aléatoires discrètes. 

  • Sujet - Corrigé (personnel) - Rapport (officiel)

    Ci-dessous les thèmes abordés :

    • Problème 1 : fonctions d'une variable, intégration, variables aléatoires discrètes, simulation, interprétation ;
    • Problème 2 : polynômes, algèbre linéaire, diagonalisation, variables aléatoires discrètes. 
  • Sujet - Corrigé (personnel)

    Sujet tombé dans la plupart des centres d'examen lors de l'épreuve annulée.

    Ci-dessous les thèmes abordés :

    • Exercice 1 : suites, séries, fonctions d'une variable ;
    • Exercice 2 : produits scalaires, variables aléatoires discrètes ;
    • Exercice 3 : variables aléatoires discrètes, algorithmique ;
    • Problème : suites, intégration, variables aléatoires à densité, convergences en probabilités, simulation. 
  • Sujet (retranscription) - Corrigé (personnel)

    Sujet dit "de Clermont", sur lequel les candidats de Clermont-Ferrand ont composé lors de l'épreuve annulée.

    Ci-dessous les thèmes abordés :

    • Exercice 1 : intégration, fonctions d'une variable réelle, variables aléatoires à densité, simulation ;
    • Exercice 2 : matrices, algèbre linéaire ;
    • Exercice 3 : diagonalisation, optimisation ;
    • Problème : variables aléatoires discrètes, convergences en probabilités, estimation, algorithmique. 
  • Sujet - Corrigé (officiel) - Rapport (officiel)

    Ci-dessous les thèmes abordés :

    • Exercice 1 : suites, séries ;
    • Exercice 2 : algèbre linéaire, produits scalaires ;
    • Exercice 3 : variables aléatoires à densité, simulation ;
    • Problème : variables aléatoires discrètes, variables aléatoires à densité, . 
  • Sujet - Corrigé (personnel) - Rapport (officiel)

    Ci-dessous les thèmes abordés :

    • Exercice 1 : matrices, algèbre linéaire, diagonalisation, produits scalaires ;
    • Exercice 2 : suites, séries, optimisation, algorithmique ;
    • Problème : variables aléatoires discrètes, séries, fonctions d'une variable, simulation.