ENDOMORPHISMES ET MATRICES SYMÉTRIQUES

1	End	omorphismes et matrices symétriques
	1.1	Endomorphismes symétriques
	1.2	Réduction des endomorphismes symétriques
	1.3	Réduction des matrices symétriques réelles
	App	olication à l'étude du signe d'une forme quadratique
	2.1	Formes quadratiques
	2.2	Lien avec les endomorphismes et matrices symétriques
	2.3	Étude du signe d'une forme quadratique

white tolld. Et

1. Endomorphismes et matrices symétriques

1.1 Endomorphismes symétriques

Dans toute cette section, E est un espace euclidien de dimension $n \ge 1$. Le produit scalaire est noté $\langle \cdot, \cdot \rangle$ et la norme $\|\cdot\|$.

DÉFINITION 1.1 Un endomorphisme u de E est dit symétrique (ou auto-adjoint) si:

$$\forall (x, y) \in E^2, \qquad \langle u(x), y \rangle = \langle x, u(y) \rangle.$$

Remarque 1.2 • La condition précédente signifie que les rôles de x et y sont symétriques dans l'expression $\langle u(x), y \rangle$.

• Il suffit de vérifier la condition de la définition lorsque x et y sont des vecteurs de base.

Exemple 1.3 Un projecteur *p* donné de E est symétrique si, et seulement si, c'est un projecteur orthogonal.

Proposition 1.4 Soit u un endomorphisme de E.

Les assertions suivantes sont équivalentes :

- (i) l'endomorphisme u est symétrique;
- (ii) l'endomorphisme u est représenté par une matrice symétrique dans une base orthonormale de E;
- (iii) l'endomorphisme u est représenté par une matrice symétrique dans toute base orthonormale de E.

Remarque 1.5 Par définition, une matrice symétrique $A \in \mathbf{M}_n(\mathbb{R})$ est dite positive (resp. définie-positive) si la forme bilinéaire $(X,Y) \longmapsto {}^t XAY$ sur $\mathbf{M}_{n,1}(\mathbb{R})$ qui lui est canoniquement associée est positive (resp. définie-positive) i.e. :

$$\forall X \in \boldsymbol{M}_{n,1}(\mathbb{R}), {}^t X A X \geqslant 0 \qquad \Big(resp. \ \forall X \in \boldsymbol{M}_{n,1}(\mathbb{R}) \setminus \{0\}, {}^t X A X > 0 \Big).$$

De même, un endomorphisme symétrique u sur un espace vectoriel euclidien E induit une forme bilinéaire symétrique $\varphi:(x,y)\longmapsto\langle u(x),y\rangle$ sur E. On dira que l'endomorphisme u est positif (resp. défini-positif) si la forme bilinéaire symétrique φ est positive (resp. définie-positive) i.e. :

$$\forall x \in \mathrm{E}, \langle u(x), x \rangle \geqslant 0$$
 $\Big(\mathrm{resp.} \ \forall x \in \mathrm{E} \setminus \{0\}, \langle u(x), x \rangle > 0 \Big).$

1.2 Réduction des endomorphismes symétriques

On conserve les notations de la section précédente.

Proposition 1.6 Les sous-espaces propres d'un endomorphisme symétrique de E sont deux-à-deux orthogonaux.

Proposition 1.7 Soient u un endomorphisme symétrique et F un sous-espace de E. Si F est stable par u, alors F^{\perp} est aussi stable par u.

Remarque 1.8 Si l'on a déjà trouvé des valeurs propres $\lambda_1, \ldots, \lambda_r$ pour un endomorphisme u symétrique, et déterminé les sous-espaces propres $E_{\lambda_1}, \ldots, E_{\lambda_r}$ associés, les vecteurs propres restants (desquels on déduira les valeurs propres restantes) seront à rechercher dans le sous-espace propre $G = \bigoplus_{i=1}^r E_{\lambda_i}$. Ce dernier étant stable, on pourra s'intéresser à la matrice de l'endomorphisme induit par u sur G dans une base bien choisie.

Lemme 1.9 Tout endomorphisme symétrique de E admet (au moins) une valeur propre.

Théorème 1.10 Soit u un endomorphisme symétrique de E.

Les sous-espaces propres de u sont supplémentaires orthogonaux. De manière équivalente, il existe une base orthonormale de E dans laquelle u est représenté par une matrice diagonale.

1.3 Réduction des matrices symétriques réelles

L'espace vectoriel $\mathbf{M}_{n,1}(\mathbb{R})$ est muni de son produit scalaire canonique.

Théorème 1.11 Soit $A \in \mathbf{M}_n(\mathbb{R})$ une matrice symétrique.

Les sous-espaces propres de A sont supplémentaires orthogonaux dans $\mathbf{M}_{n,1}(\mathbb{R})$. De manière équivalente, il existe une matrice $P \in \mathbf{Gl}_n(\mathbb{R})$ orthogonale et une matrice $D \in \mathbf{M}_n(\mathbb{R})$ diagonale telles que :

$$D = P^{-1}AP = {}^{t}PAP.$$

- Remarques 1.12 Une matrice symétrique $A \in \mathbf{M}_n(\mathbb{R})$ peut être diagonalisée par une matrice de passage P non orthogonale! Cependant, le choix d'une matrice orthogonale permet d'épargner le calcul de P^{-1} , qui s'obtient alors par simple transposition; il est donc intéressant lorsque ce calcul est nécessaire par la suite (calcul de puissances de matrices, ...). Ce choix s'avère également pertinent dans de nombreuses situations théoriques (cf. travaux dirigés).
- En pratique, pour diagonaliser une matrice symétrique réelle A avec une matrice de passage orthogonale, on détermine les sous-espaces propres, on choisit une base orthonormale de chacun d'eux puis il ne reste qu'à constituer la matrice P, automatiquement orthogonale, dont les colonnes sont les vecteurs ainsi choisis.

• Attention! Une matrice symétrique à coefficients complexes n'est en général pas diagonalisable. C'est le cas de la matrice symétrique

$$A = \begin{pmatrix} 1 & \mathbf{i} \\ \mathbf{i} & -1 \end{pmatrix} \in \mathbf{M}_2(\mathbb{C}).$$

Exemple 1.13 Soit

$$A = \begin{pmatrix} 13 & -2 & -3 \\ -2 & 10 & -6 \\ -3 & -6 & 5 \end{pmatrix}.$$

Déterminer $P \in Gl_3(\mathbb{R})$ orthogonale telle que la matrice $D = P^{-1}AP$ soit diagonale.

Proposition 1.14 Soit $A \in \mathbf{M}_n(\mathbb{R})$ une matrice symétrique.

En notant $(X_1, ..., X_n)$ une base orthonormale de $\mathbf{M}_{n,1}(\mathbb{R})$ formée de colonnes propres de A et $\lambda_1, ..., \lambda_n$ les valeurs propres associées, on a:

$$A = \sum_{i=1}^{n} \lambda_i X_i^{t} X_i.$$

Remarque 1.15 Tout projecteur orthogonal p de l'espace euclidien E est symétrique et est donc à ce titre représenté en base orthonormale \underline{e} par une matrice A symétrique.

Si (u_1,\ldots,u_r) est une base orthonormale de $F=\operatorname{Im} p=\operatorname{Ker}(p-\operatorname{id}_E)$ et (u_{r+1},\ldots,u_n) une base orthonormale de $F^\perp=\operatorname{Ker} p$, alors (u_1,\ldots,u_n) est une base orthonormale de E formée de vecteurs propres pour p, respectivement associés à la valeur propre 1 pour les r premiers et 0 pour les suivants. En notant U_1,\ldots,U_n les colonnes des coordonnées de ces vecteurs en base \underline{e} , l'énoncé précédent donne donc $A=\sum_{i=1}^r U_i{}^tU_i$: le résultat précédent généralise donc une formule établie dans le chapitre précédent.

2. Application à l'étude du signe d'une forme quadratique

2.1 Formes quadratiques

Les espaces \mathbb{R}^n et $\mathbf{M}_{n,1}(\mathbb{R})$ sont munis de leurs structures euclidiennes canoniques. Ces deux espaces sont canoniquement isomorphes : on notera en minuscules (x, y, ...) les éléments de \mathbb{R}^n et en majuscules (X, Y, ...) les éléments de $\mathbf{M}_{n,1}(\mathbb{R})$ qui leur correspondent.

Définition 2.1 On appelle forme quadratique sur \mathbb{R}^n toute application $q:\mathbb{R}^n\longrightarrow\mathbb{R}$ pour laquelle existe une forme bilinéaire φ sur \mathbb{R}^n telle que :

$$\forall x \in \mathbb{R}^n, \qquad q(x) = \varphi(x, x).$$

Exemple 2.2 Le carré d'une norme euclidienne sur \mathbb{R}^n est une forme quadratique.

Proposition 2.3 Soit q une forme quadratique sur \mathbb{R}^n . On a:

$$\forall \lambda \in \mathbb{R}, \quad \forall x \in \mathbb{R}^n, \quad q(\lambda x) = \lambda^2 q(x).$$

Remarque 2.4 En revanche, on ne dispose pas de formule pour q(x + y) sans faire intervenir la forme bilinéaire φ :

$$\forall x, y \in E$$
, $q(x + y) = q(x) + \varphi(x, y) + \varphi(y, x) + q(y)$.

Proposition 2.5 Une application $q: \mathbb{R}^n \longrightarrow \mathbb{R}$ est une forme quadratique si, et seulement si, il existe une matrice $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathbf{M}_n(\mathbb{R})$ telle que :

$$\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n, \qquad q(x) = {}^t XAX = \sum_{1 \leqslant i,j \leqslant n} a_{i,j} x_i x_j.$$

Exemple 2.6 Les formes bilinéaires φ_1 et φ_2 sur \mathbb{R}^2 canoniquement associées aux matrices

$$A_1 = \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix} \qquad \text{ et } \qquad A_2 = \begin{pmatrix} 1 & 2 \\ -4 & 3 \end{pmatrix}$$

définissent la même forme quadratique :

$$orall x = (x_1, x_2) \in \mathbb{R}^2, \qquad {}^t \! \mathrm{X} \mathrm{A}_1 \mathrm{X} = {}^t \! \mathrm{X} \mathrm{A}_2 \mathrm{X} = x_1^2 - 2 x_1 x_2 + 3 x_2^2 = q(x).$$

Remarque 2.7 À toute matrice $A \in \mathbf{M}_n(\mathbb{R})$ est canoniquement associée une forme bilinéaire sur \mathbb{R}^n et donc une forme quadratique sur \mathbb{R}^n . Mais cette association n'est pas bijective comme on vient de le voir. De même, à tout endomorphisme u de \mathbb{R}^n est associée la forme bilinéaire $\varphi:(x,y)\longmapsto\langle u(x),y\rangle$ sur \mathbb{R}^n et donc la forme quadratique $q: x \longmapsto \langle u(x), x \rangle$.

2.2 Lien avec les endomorphismes et matrices symétriques

Comme on vient de le voir, il n'y a pas unicité de la forme bilinéaire φ à l'origine d'une forme quadratique q. Il y a cependant unicité d'une telle forme bilinéaire symétrique :

Proposition 2.8 Soit q une forme quadratique sur \mathbb{R}^n .

Il existe une unique forme bilinéaire symétrique φ sur \mathbb{R}^n , appelée forme polaire de q, telle que :

$$\forall x \in \mathbb{R}^n, \qquad q(x) = \varphi(x, x).$$

Remarque 2.9 On dira qu'une forme quadratique q sur \mathbb{R}^n est positive (resp. définie-positive) si sa forme This is a second of the second polaire φ est positive (resp. définie positive).

D'un point de vue matriciel ou géométrique, le résultat précédent prend la forme suivante.

Proposition 2.10 Soit q une forme quadratique sur \mathbb{R}^n .

(i) Il existe une unique matrice $A \in \mathbf{M}_n(\mathbb{R})$ symétrique telle que :

$$\forall x \in \mathbb{R}^n, \qquad q(x) = {}^t XAX.$$

(ii) Il existe un unique endomorphisme u symétrique de \mathbb{R}^n tel que :

$$\forall x \in \mathbb{R}^n, \qquad q(x) = \langle u(x), x \rangle.$$

La matrice A représente l'endomorphisme u en base canonique.

On dira que A et u sont respectivement les matrice et endomorphisme symétriques associés à q.

Remarque 2.11 Si $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in \mathbf{M}_n(\mathbb{R})$ est une matrice symétrique, la forme quadratique qui lui est canoniquement associée s'écrit, pour $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$,

$$q(x) = \sum_{1 \le i,j \le n} a_{i,j} x_i x_j = \sum_{i=1}^n a_{i,i} x_i^2 + \sum_{1 \le i \ne j \le n} a_{i,j} x_i x_j = \sum_{i=1}^n a_{i,i} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{i,j} x_i x_j.$$

Exemple 2.12 Déterminer la matrice symétrique $A \in \mathbf{M}_3(\mathbb{R})$ associée à la forme quadratique :

$$q: x = (x_1, x_2, x_3) \in \mathbb{R}^3 \longmapsto 3x_2^2 - 4x_3^2 + 2x_1x_2 - x_2x_3.$$

2.3 Étude du signe d'une forme quadratique

LEMME 2.13 Soient q une forme quadratique sur \mathbb{R}^n et u l'endomorphisme symétrique de \mathbb{R}^n qui lui est associé. Soient $\underline{e} = (e_1, \dots, e_n)$ une base orthonormale de \mathbb{R}^n formée de vecteurs propres de u et $\lambda_1, \dots, \lambda_n$ les valeurs propres associées.

Pour $x \in \mathbb{R}^n$ de coordonnées (ξ_1, \dots, ξ_n) dans la base e, on a :

$$q(x) = \sum_{i=1}^{n} \lambda_i \xi_i^2 = \sum_{i=1}^{n} \lambda_i \langle e_i, x \rangle^2$$
.

Proposition 2.14 Soient q une forme quadratique sur \mathbb{R}^n et u l'endomorphisme symétrique de \mathbb{R}^n qui lui est associé. En notant α (resp. β) la plus petite (resp. la plus grande) valeur propre de u, on a :

$$\forall x \in \mathbb{R}^n, \quad \alpha \|x\|^2 \leqslant q(x) \leqslant \beta \|x\|^2.$$

Un vecteur $x \neq 0$ réalise l'égalité dans l'inégalité de gauche (resp. de droite) si, et seulement si, il est propre pour u, associé à la valeur propre α (resp. β).

Théorème 2.15 Soient q une forme quadratique sur \mathbb{R}^n et u l'endomorphisme symétrique de \mathbb{R}^n qui lui est associé.

(i) Si les valeurs propres de u sont toutes positives ou nulles (resp. toutes négatives ou nulles), alors :

$$\forall x \in \mathbb{R}^n$$
, $q(x) \geqslant 0$ (resp. $q(x) \leqslant 0$).

(ii) Si les valeurs propres de u sont toutes strictement positives (resp. toutes strictement négatives), alors :

$$\forall x \in \mathbb{R}^n \setminus \{0\}, \qquad q(x) > 0 \quad (resp. \ q(x) < 0).$$

(iii) Si u admet 0 pour valeur propre, alors :

$$\exists x \in \mathbb{R}^n \setminus \{0\}, \qquad q(x) = 0.$$

(iv) Si u admet deux valeurs propres non nulles de signes contraires, alors :

$$\exists x, y \in \mathbb{R}^n$$
, $q(x)q(y) < 0$.

Remarque 2.16 Dans les deux énoncés précédents, les valeurs propres de u sont aussi celles de la matrice symétrique $A \in \mathbf{M}_n(\mathbb{R})$ associée à q.

Remarque 2.17 Dans l'énoncé précédent, les assertions (iii) et (iv) montrent que (i) et (ii) sont des équivalences, mais la réciproque de (iii) est fausse.

COROLLAIRE 2.18 Soient φ une forme bilinéaire symétrique sur \mathbb{R}^n et A sa matrice en base canonique.

- (i) La forme bilinéaire φ est positive si, et seulement si, toutes les valeurs propres de A sont positives ou nulles.
- (ii) La forme bilinéaire φ est définie-positive si, et seulement si, toutes les valeurs propres de A sont strictement positives.

Remarque 2.19 L'énoncé précédent vaut pour une forme bilinéaire symétrique sur un espace vectoriel E de dimension finie et A une matrice qui la représente dans une base quelconque de E.

Il en ressort la caractérisation suivante des matrices symétriques positives (resp. définies-positives), que l'on demande fréquemment de redémontrer dans les épreuves de concours.

COROLLAIRE 2.20 Soit $A \in \mathbf{M}_n(\mathbb{R})$ une matrice symétrique.

- (i) La matrice A est positive si, et seulement si, toutes ses valeurs propres sont positives ou nulles.
- (ii) La matrice A est définie-positive si, et seulement si, toutes ses valeurs propres sont strictement positives.

alidia. Filld. Fil